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Metals in Urban Streams Tool (MUST) 

 

Overview 

MUST works through two steps to estimate concentrations of dissolved copper and zinc in an urban 

stream. 

In STEP 1, MUST estimates the catchment yields of copper and zinc based on catchment land use 

and stormwater management characteristics. 

In STEP 2, MUST estimates the median and 95th percentile instream concentrations of dissolved 

copper and zinc based on predetermined relationships derived from water quality observations and 

corresponding catchment yield estimates. 

These two steps are repeated 100 times, with certain input parameters varying based on their 

random selection from predetermined datasets. Consequently, MUST generates a distribution of 

concentration estimates rather than a single value. By comparing this distribution of estimates 

against a threshold value, MUST then reports the probability that the threshold will be exceeded. 

The following description provides a summary of the methods and data sources involved in each of 

these two steps.  

Further background on the concepts involved in the development of MUST are given in Gadd et al. 

(2018).  

 

Step 1 – Catchment Yields 

Catchment yields of copper and zinc (referred to collectively as ‘metals’ below) are calculated by 

estimating the respective metal load and dividing by the catchment area. 

Catchment metal loads are estimated as the sum of loads calculated for each land use class. These 

land use metal load estimates are the product of: 

• the area of the given land use class; 

• a metal yield for the land use class, modified to reflect source control if selected; 

• a load reduction factor (LRF), if stormwater treatment is selected; and 

• the proportion of the area of the given land use type receiving stormwater treatment. 

The area of the given land use class and proportion receiving stormwater treatment are held 

constant, based on input entries made by the user. 

In contrast, each of MUST’s 100 iterations draws a metal yield and LRF at random from datasets that 

reflect the expected variation in these parameters in the real world. These datasets have been 

assembled as follows. 
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Metal yields 

The datasets of metal yields for each urban land use class are made up of 100 values that reflect: 

• Variability in the proportion of the given land use class occupied by different land covers 

(roofs, roads etc.); and 

• Uncertainty in estimates of metal yields derived from sampling and modelling of stormwater 

runoff from each type of land cover. 

Each dataset of 100 yields was derived by considering 10 sample areas of the given land use. Analysis 

of land use shape files was conducted to disaggregate each sample area into constituent land covers 

(a range of roofs, roads, paved surfaces and pervious cover types). A metal yield was assigned at 

random to each land cover type from one of three estimates (‘best’, ‘low’ or ‘high’) according to 

probabilities of 0.5 (best) and 0.25 (low and high). A weighted yield for each of the 10 samples was 

estimated based on the proportion of the sample area occupied by each land cover type. This 

exercise was repeated 10 times for each of the 10 sample areas, giving 100 yield estimates for the 

given land use class. 

The best, low and high yields were drawn from those used in sensitivity testing reported in ARC 

(2011), with the following exceptions: 

• Rather than adopting the ARC (2011) value of zero, the zinc yields for commercial paved 

surfaces were estimated by multiplying the equivalent copper yields by 5.5. This approach, 

taken previously by Moores et al. (2017), is based on Zn:Cu ratios in the yields for industrial 

and residential paved surfaces.  

• For copper source control, the yields applying to roads and paved surfaces were reduced by 

90%, reflecting California’s target improvement in the mean content of copper in vehicle 

brake pads (CSQA, 2019). 

• For zinc source control, roof replacement was represented by substituting the yields 

applying to unpainted and poorly painted galvanized steel roofing with yields of the lowest-

Zn generating roofing materials. 

The derivation of urban land use yields for the ‘low imperviousness’ source control option involved 

altering the proportion of impervious and pervious land cover classes in the 10 sample areas, rather 

than changing the land cover yields. The areas of roofs, minor roads and paved areas in each sample 

were assumed to be reduced by 20%, with a consequential increase in the area of urban grassland 

and trees. 

The following plots show the distribution of yields in each of the urban land use class datasets. 
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Copper yields 
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Zinc yields 
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In contrast to the urban land use classes, the rural land use classes were assumed to each be made 

up of only one land cover type. This meant that the datasets of metal yields for each rural land use 

class are made up of 100 values that reflect uncertainty in the yields, but not in the proportion of 

land cover types. The best, low and high yields for the rural land use classes were drawn from those 

reported in ARC (2011) for different slope classes or soil types. 

Load reduction factors 

The datasets of LRFs for the two stormwater treatment options are derived from data obtained from 

the International BMP database1, supplemented with data from a small number of New Zealand 

studies.  

Analysis was conducted on paired event mean concentrations (EMCs) of total copper and total zinc 

in samples of inflows to and outflows from stormwater treatment devices. The proportion of each 

metal removed by treatment was calculated for each event sampled. The median of the event metal 

removal rates was adopted to represent the long-term performance of each treatment device 

sampled. The median removal rates of all devices sampled were collated to give the following LRF 

datasets: 

• Ponds and wetlands, to represent conventional, bottom-of-catchment, stormwater 

treatment; and 

• Bioretention and raingardens, to represent stormwater treatment by Green Infrastructure 

(GI). 

A small number of outliers (negatives, zeros and very low positives) were excluded from these 

datasets.  

As a check on these datasets, they were compared with the results of modelling conducted in the 

development of LRFs for New Zealand’s C-CALM stormwater contaminant load model (Semadeni-

Davies, 2008). That modelling involved estimating many thousands of iterations of LRFs for 

ponds/wetlands and raingardens, with one of several design (e.g. sizing, shape, inlet and outlet 

configuration) and catchment (e.g. size, slope) parameter values varied in each iteration. Because 

the modelling was restricted to particulate metal removal it generated distributions of LRFs that 

reflected generally better performance than the data in the International BMP database. However, 

by combining the modelled LRFs for particulate metal removal with representative LRFs for dissolved 

metal removal (based on literature review, also reported in Semadeni-Davies, 2008), distributions of 

LRFs for total metal removal were generated. These compare well with the distributions of LRFs 

generated from the International BMP database, giving confidence in these latter datasets for use by 

MUST. 

The following plots show the distributions of LRFs in the two stormwater treatment datasets.  

 

 

 

 

 
1 http://www.bmpdatabase.org/bmpstat.html 

http://www.bmpdatabase.org/bmpstat.html
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Copper removal 
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Step 2 – Instream Concentrations 

Instream dissolved metal concentrations are estimated from regression relationships between 

modelled catchment yields and concentrations calculated from urban stream monitoring data. The 

relationships incorporate uncertainty associated with both the yields and concentrations. 

The concentrations are the median and 95th percentile instream dissolved metal concentrations 

measured in samples collected for State of the Environment (SoE) monitoring in the Auckland (23 

sites), Canterbury (23 sites) and Wellington (10 sites) regions. Confidence limits were generated to 

reflect uncertainty associated with each median and 95th percentile concentration estimate. 

The modelled catchment yields associated with each SoE monitoring location were estimated from 

the land use characteristics of the corresponding catchments. With the exception of Auckland, these 

estimates were derived using the same approach as described above (see section on “Metal yields”), 

generating 100 estimates per SoE catchment. In the case of Auckland, more detailed information on 

catchment land cover was available, such that the 100 estimates of catchment yields reflect 

uncertainty in land cover yields but not land cover proportions.     

The relationships between modelled catchment yields and median and 95th percentile instream 

concentrations of dissolved copper and zinc are given below.  The grey lines represent a sample of 

100 bootstrapped regression relationships fitted to the data.  These lines capture uncertainty in 

estimates of the yields, as described above. 
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Median dissolved copper concentration 
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Once a user has entered input information on a catchment or project area of interest MUST 

calculates 100 possible estimates of the catchment yield. From each of these 100 catchment yield 

estimates, MUST then queries the regression relationships shown above to estimate 100 possible 

instream concentrations. These distributions of concentrations and their associated prediction 

intervals then provide the basis for estimating the probability that a given threshold concentration 

will be exceeded. 
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